Commit ac18f21d authored by Max Haslbeck's avatar Max Haslbeck
Browse files

finished some proofs about Comb

parent 2cf2602a9337
......@@ -133,7 +133,7 @@ qed
lemma BIT_pairwise': " qs \<in> {xs. set xs \<subseteq> set init} \<Longrightarrow>
(x, y) \<in> {(x, y) |x y. x \<in> set init \<and> y \<in> set init \<and> x \<noteq> y} \<Longrightarrow>
(x, y) \<in> {(x, y). x \<in> set init \<and> y \<in> set init \<and> x \<noteq> y} \<Longrightarrow>
x \<noteq> y \<Longrightarrow> n < Lastxy qs {x, y} \<Longrightarrow> Pbefore_in x y BIT qs init n = Pbefore_in x y BIT (Lxy qs {x, y}) (Lxy init {x, y}) (nrofnextxy {x, y} qs n)"
proof -
case goal1
......
......@@ -119,6 +119,29 @@ next
qed
lemma configCOMB2asd: "config'_rand (COMB h) (COMB_state h x y i) qs = do {
(b::bool) \<leftarrow> (bernoulli_pmf 0.8);
(b1,b2) \<leftarrow> (config'_rand BIT i qs);
(t1,t2) \<leftarrow> (config'_rand (embedd (rTS h)) (return_pmf ([x,y],h)) qs);
return_pmf (if b then (b1, CBit b2) else (t1, CTs t2))
}" (is "?LHS = ?RHS i")
proof (induct qs rule: rev_induct)
case Nil
show ?case
by(simp add: COMB_state_def BIT_init_def COMB_def rTS_def map_pmf_def bind_return_pmf bind_assoc_pmf )
next
case (snoc r rs)
show ?case apply(simp add: take_Suc_conv_app_nth)
apply(subst config'_rand_append)
apply(subst snoc(1))
apply(simp)
apply(simp add: bind_return_pmf bind_assoc_pmf split_def config'_rand_append)
apply(rule bind_pmf_cong)
apply(simp)
apply(simp only: set_pmf_bernoulli)
apply(case_tac xa)
by(simp_all add: COMB_def COMB_step_def rTS_def map_pmf_def split_def bind_return_pmf bind_assoc_pmf)
qed
lemma T2_COMB_split: "T\<^sub>p_on2 (COMB h) qs (COMB_state h x y i)
......@@ -133,15 +156,15 @@ proof -
by(simp only: setsum_right_distrib setsum.distrib)
show ?thesis unfolding A unfolding T\<^sub>p_on2_def T_on_n2_def
apply(rule setsum.cong)
apply(simp) sorry (*
apply(subst configCOMB)
apply(simp)
apply(subst configCOMB2asd)
apply(simp)
unfolding rTS_def COMB_def
apply(simp add: bind_assoc_pmf bind_return_pmf split_def )
apply(simp add: E_bernoulli2[unfolded map_pmf_def])
unfolding COMB_step_def BIT_init_def map_pmf_def apply(simp add: split_def)
apply(simp add: bind_assoc_pmf)
by(simp add: bind_return_pmf split_def ) *)
by(simp add: bind_return_pmf split_def )
qed
......@@ -779,8 +802,10 @@ lemma COMB_pairwise: "pairwise (COMB [])"
proof(rule pairwise_property_lemma')
case goal1
thm TS_pairwise'[OF goal1]
have 1: "nrofnextxy {x, y} qs n \<le> length (Lxy qs {x, y})" sorry
thm TS_pairwise'[OF goal1(1)] goal1
have 1: "nrofnextxy {x, y} qs n < length (Lxy qs {x, y})"
apply(rule down_in_bounds)
by fact
from goal1(4) have "n < Lastxy qs {x, y}" by simp
also have "\<dots> \<le> length qs" by (rule Lastxy_length)
finally have "n<length qs" .
......@@ -791,7 +816,7 @@ proof(rule pairwise_property_lemma')
apply(subst configCOMB)
apply(fact e)
apply(subst configCOMB)
apply(fact 1)
using 1 apply(simp)
apply(simp only: map_pmf_def bind_assoc_pmf)
apply(rule bind_pmf_cong)
apply(simp)
......@@ -838,7 +863,10 @@ proof -
qed
lemma COMB_no_paid: " \<forall>((free, paid), t)\<in>set_pmf (snd (COMB []) (s, is) q). paid = []"
sorry
apply(simp add: COMB_def COMB_step_def split_def BIT_step_def TS_step_d_def)
apply(case_tac "is")
by(simp_all add: BIT_step_def TS_step_d_def)
theorem COMB_competitive: "\<forall>s0\<in>{x::nat list. distinct x \<and> x\<noteq>[]}.
......
......@@ -2478,7 +2478,7 @@ scheiß egal, ich machs trotzdem erstmal!
lemma TS_pairwise': "qs \<in> {xs. set xs \<subseteq> set init} \<Longrightarrow>
(x, y) \<in> {(x, y) |x y. x \<in> set init \<and> y \<in> set init \<and> x \<noteq> y} \<Longrightarrow>
(x, y) \<in> {(x, y). x \<in> set init \<and> y \<in> set init \<and> x \<noteq> y} \<Longrightarrow>
x \<noteq> y \<Longrightarrow>
n < Lastxy qs {x, y} \<Longrightarrow>
Pbefore_in x y (Partial_Cost_Model.embedd (rTS [])) qs init n =
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment