Commit 770e364e authored by Manuel Eberl's avatar Manuel Eberl
Browse files

sitegen for CSP_RefTK

parent 626c957d2647
......@@ -9995,3 +9995,28 @@ abstract =
technique we can effectively harness theorem provers, model finders
and 'hammers' for reasoning with quantified non-classical
logics.
[CSP_RefTK]
title = The HOL-CSP Refinement Toolkit
author = Safouan Taha <mailto:safouan.taha@lri.fr>, Burkhart Wolff <https://www.lri.fr/~wolff/>, Lina Ye <mailto:lina.ye@lri.fr>
topic = Computer science/Concurrency/Process calculi, Computer science/Semantics
date = 2020-11-19
notify = wolff@lri.fr
abstract =
We use a formal development for CSP, called HOL-CSP2.0, to analyse a
family of refinement notions, comprising classic and new ones. This
analysis enables to derive a number of properties that allow to deepen
the understanding of these notions, in particular with respect to
specification decomposition principles for the case of infinite sets
of events. The established relations between the refinement relations
help to clarify some obscure points in the CSP literature, but also
provide a weapon for shorter refinement proofs. Furthermore, we
provide a framework for state-normalisation allowing to formally
reason on parameterised process architectures. As a result, we have a
modern environment for formal proofs of concurrent systems that allow
for the combination of general infinite processes with locally finite
ones in a logically safe way. We demonstrate these
verification-techniques for classical, generalised examples: The
CopyBuffer for arbitrary data and the Dijkstra's Dining
Philosopher Problem of arbitrary size.
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>The HOL-CSP Refinement Toolkit - Archive of Formal Proofs
</title>
<link rel="stylesheet" type="text/css" href="../front.css">
<link rel="icon" href="../images/favicon.ico" type="image/icon">
<link rel="alternate" type="application/rss+xml" title="RSS" href="../rss.xml">
<!-- MathJax for LaTeX support in abstracts -->
<script>
MathJax = {
tex: {
inlineMath: [['$', '$'], ['\\(', '\\)']]
},
processEscapes: true,
svg: {
fontCache: 'global'
}
};
</script>
<script id="MathJax-script" async src="../components/mathjax/es5/tex-mml-chtml.js"></script>
</head>
<body class="mathjax_ignore">
<table width="100%">
<tbody>
<tr>
<!-- Navigation -->
<td width="20%" align="center" valign="top">
<p>&nbsp;</p>
<a href="https://www.isa-afp.org/">
<img src="../images/isabelle.png" width="100" height="88" border=0>
</a>
<p>&nbsp;</p>
<p>&nbsp;</p>
<table class="nav" width="80%">
<tr>
<td class="nav" width="100%"><a href="../index.html">Home</a></td>
</tr>
<tr>
<td class="nav"><a href="../about.html">About</a></td>
</tr>
<tr>
<td class="nav"><a href="../submitting.html">Submission</a></td>
</tr>
<tr>
<td class="nav"><a href="../updating.html">Updating Entries</a></td>
</tr>
<tr>
<td class="nav"><a href="../using.html">Using Entries</a></td>
</tr>
<tr>
<td class="nav"><a href="../search.html">Search</a></td>
</tr>
<tr>
<td class="nav"><a href="../statistics.html">Statistics</a></td>
</tr>
<tr>
<td class="nav"><a href="../topics.html">Index</a></td>
</tr>
<tr>
<td class="nav"><a href="../download.html">Download</a></td>
</tr>
</table>
<p>&nbsp;</p>
<p>&nbsp;</p>
</td>
<!-- Content -->
<td width="80%" valign="top">
<div align="center">
<p>&nbsp;</p>
<h1> <font class="first">T</font>he
<font class="first">H</font>OL-CSP
<font class="first">R</font>efinement
<font class="first">T</font>oolkit
</h1>
<p>&nbsp;</p>
<table width="80%" class="data">
<tbody>
<tr>
<td class="datahead" width="20%">Title:</td>
<td class="data" width="80%">The HOL-CSP Refinement Toolkit</td>
</tr>
<tr>
<td class="datahead">
Authors:
</td>
<td class="data">
Safouan Taha (safouan /dot/ taha /at/ lri /dot/ fr),
<a href="https://www.lri.fr/~wolff/">Burkhart Wolff</a> and
Lina Ye (lina /dot/ ye /at/ lri /dot/ fr)
</td>
</tr>
<tr>
<td class="datahead">Submission date:</td>
<td class="data">2020-11-19</td>
</tr>
<tr>
<td class="datahead" valign="top">Abstract:</td>
<td class="abstract mathjax_process">
We use a formal development for CSP, called HOL-CSP2.0, to analyse a
family of refinement notions, comprising classic and new ones. This
analysis enables to derive a number of properties that allow to deepen
the understanding of these notions, in particular with respect to
specification decomposition principles for the case of infinite sets
of events. The established relations between the refinement relations
help to clarify some obscure points in the CSP literature, but also
provide a weapon for shorter refinement proofs. Furthermore, we
provide a framework for state-normalisation allowing to formally
reason on parameterised process architectures. As a result, we have a
modern environment for formal proofs of concurrent systems that allow
for the combination of general infinite processes with locally finite
ones in a logically safe way. We demonstrate these
verification-techniques for classical, generalised examples: The
CopyBuffer for arbitrary data and the Dijkstra's Dining
Philosopher Problem of arbitrary size.</td>
</tr>
<tr>
<td class="datahead" valign="top">BibTeX:</td>
<td class="formatted">
<pre>@article{CSP_RefTK-AFP,
author = {Safouan Taha and Burkhart Wolff and Lina Ye},
title = {The HOL-CSP Refinement Toolkit},
journal = {Archive of Formal Proofs},
month = nov,
year = 2020,
note = {\url{https://isa-afp.org/entries/CSP_RefTK.html},
Formal proof development},
ISSN = {2150-914x},
}</pre>
</td>
</tr>
<tr><td class="datahead">License:</td>
<td class="data"><a href="http://isa-afp.org/LICENSE">BSD License</a></td></tr>
<tr><td class="datahead">Depends on:</td>
<td class="data"><a href="HOL-CSP.html">HOL-CSP</a> </td></tr>
</tbody>
</table>
<p></p>
<table class="links">
<tbody>
<tr>
<td class="links">
<a href="../browser_info/current/AFP/CSP_RefTK/outline.pdf">Proof outline</a><br>
<a href="../browser_info/current/AFP/CSP_RefTK/document.pdf">Proof document</a>
</td>
</tr>
<tr>
<td class="links">
<a href="../browser_info/current/AFP/CSP_RefTK/index.html">Browse theories</a>
</td></tr>
<tr>
<td class="links">
<a href="../release/afp-CSP_RefTK-current.tar.gz">Download this entry</a>
</td>
</tr>
<tr><td class="links">Older releases:
None
</td></tr>
</tbody>
</table>
</div>
</td>
</tr>
</tbody>
</table>
<script src="../jquery.min.js"></script>
<script src="../script.js"></script>
</body>
</html>
\ No newline at end of file
......@@ -148,7 +148,9 @@ in Isar and is substantially shorter but more complete.</td>
<tr><td class="datahead">Used by:</td>
<td class="data"><a href="CSP_RefTK.html">CSP_RefTK</a> </td></tr>
</tbody>
......
......@@ -130,6 +130,16 @@ of a scientific journal, is indexed by <a href="http://dblp.uni-trier.de/db/jour
Hanna Lachnitt
and Yijun He
</td>
</tr>
<tr>
<td class="entry">
2020-11-19: <a href="entries/CSP_RefTK.html">The HOL-CSP Refinement Toolkit</a>
<br>
Authors:
Safouan Taha,
<a href="https://www.lri.fr/~wolff/">Burkhart Wolff</a>
and Lina Ye
</td>
</tr>
<tr>
<td class="entry">
......
......@@ -88,6 +88,30 @@ matrix representation for quantum circuits, successfully formalising
the no-cloning theorem, quantum teleportation, Deutsch&#39;s
algorithm, the Deutsch-Jozsa algorithm and the quantum Prisoner&#39;s
Dilemma.</description>
</item>
<item>
<title>The HOL-CSP Refinement Toolkit</title>
<link>https://www.isa-afp.org/entries/CSP_RefTK.html</link>
<guid>https://www.isa-afp.org/entries/CSP_RefTK.html</guid>
<dc:creator> Safouan Taha, Burkhart Wolff, Lina Ye </dc:creator>
<pubDate>19 Nov 2020 00:00:00 +0000</pubDate>
<description>
We use a formal development for CSP, called HOL-CSP2.0, to analyse a
family of refinement notions, comprising classic and new ones. This
analysis enables to derive a number of properties that allow to deepen
the understanding of these notions, in particular with respect to
specification decomposition principles for the case of infinite sets
of events. The established relations between the refinement relations
help to clarify some obscure points in the CSP literature, but also
provide a weapon for shorter refinement proofs. Furthermore, we
provide a framework for state-normalisation allowing to formally
reason on parameterised process architectures. As a result, we have a
modern environment for formal proofs of concurrent systems that allow
for the combination of general infinite processes with locally finite
ones in a logically safe way. We demonstrate these
verification-techniques for classical, generalised examples: The
CopyBuffer for arbitrary data and the Dijkstra&#39;s Dining
Philosopher Problem of arbitrary size.</description>
</item>
<item>
<title>Verified SAT-Based AI Planning</title>
......@@ -578,19 +602,5 @@ AFP entries. This permits to reuse results from both developments and
it is done by means of the lifting and transfer package together with
the use of local type definitions.</description>
</item>
<item>
<title>The Nash-Williams Partition Theorem</title>
<link>https://www.isa-afp.org/entries/Nash_Williams.html</link>
<guid>https://www.isa-afp.org/entries/Nash_Williams.html</guid>
<dc:creator> Lawrence C. Paulson </dc:creator>
<pubDate>16 May 2020 00:00:00 +0000</pubDate>
<description>
In 1965, Nash-Williams discovered a generalisation of the infinite
form of Ramsey&#39;s theorem. Where the latter concerns infinite sets
of n-element sets for some fixed n, the Nash-Williams theorem concerns
infinite sets of finite sets (or lists) subject to a “no initial
segment” condition. The present formalisation follows a
monograph on Ramsey Spaces by Todorčević.</description>
</item>
</channel>
</rss>
This diff is collapsed.
......@@ -234,6 +234,7 @@
<a href="entries/Noninterference_Concurrent_Composition.html">Noninterference_Concurrent_Composition</a> &nbsp;
<a href="entries/Modal_Logics_for_NTS.html">Modal_Logics_for_NTS</a> &nbsp;
<a href="entries/HOL-CSP.html">HOL-CSP</a> &nbsp;
<a href="entries/CSP_RefTK.html">CSP_RefTK</a> &nbsp;
</div>
<h3>Data structures</h3>
<div class="list">
......@@ -489,6 +490,7 @@
<a href="entries/QHLProver.html">QHLProver</a> &nbsp;
<a href="entries/TESL_Language.html">TESL_Language</a> &nbsp;
<a href="entries/Isabelle_C.html">Isabelle_C</a> &nbsp;
<a href="entries/CSP_RefTK.html">CSP_RefTK</a> &nbsp;
</div>
<h3>System description languages</h3>
<div class="list">
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment