Commit 10ec63ba authored by Lawrence Paulson's avatar Lawrence Paulson
Browse files

slight tidying of 1.19

parent c272e0d255f2
......@@ -56,7 +56,7 @@ proof
then have "Inf S' \<in> T"
by (metis Diff_eq_empty_iff Diff_iff Inf_nat_def1 eq)
moreover have "\<And>x. x \<in> S \<Longrightarrow> x < Inf S'"
using S' False by (auto simp: less_sets_def intro!: Inf_nat_def1)
using S' False by (metis Diff_eq_empty_iff Inf_nat_def1 eq less_sets_def)
moreover have "{n \<in> T. n < Inf S'} \<subseteq> S"
using Inf_nat_def eq not_less_Least by fastforce
ultimately show ?rhs
......@@ -66,10 +66,6 @@ next
assume ?rhs
then show ?lhs
proof (elim disjE bexE)
assume "S = T"
then show "init_segment S T"
using init_segment_refl by blast
next
fix m
assume m: "m \<in> T" "S = {n \<in> T. n < m}"
then have "T = S \<union> {n \<in> T. m \<le> n}"
......@@ -78,7 +74,7 @@ next
using m by (auto simp: less_sets_def)
ultimately show "init_segment S T"
using init_segment_Un by force
qed
qed (use init_segment_refl in blast)
qed
lemma init_segment_empty [iff]: "init_segment {} S"
......@@ -86,20 +82,17 @@ lemma init_segment_empty [iff]: "init_segment {} S"
lemma init_segment_insert_iff:
assumes Sn: "S \<lless> {n}" and TS: "\<And>x. x \<in> T-S \<Longrightarrow> n\<le>x"
shows "init_segment (insert n S) T \<longleftrightarrow> init_segment S T \<and> n \<in> T"
shows "init_segment (insert n S) T \<longleftrightarrow> init_segment S T \<and> n \<in> T" (is "?lhs=?rhs")
proof
assume "init_segment (insert n S) T"
then have "init_segment ({n} \<union> S) T"
by auto
then show "init_segment S T \<and> n \<in> T"
by (metis Sn Un_iff init_segment_def init_segment_trans insertI1 sup_commute)
assume ?lhs then show ?rhs
by (metis Sn Un_commute init_segment_Un init_segment_subset init_segment_trans insertI1 insert_is_Un subsetD)
next
assume rhs: "init_segment S T \<and> n \<in> T"
assume rhs: ?rhs
then obtain R where R: "T = S \<union> R" "S \<lless> R"
by (auto simp: init_segment_def less_sets_def)
then have "S\<union>R = insert n (S \<union> (R-{n})) \<and> insert n S \<lless> R-{n}"
unfolding less_sets_def using rhs TS nat_less_le by auto
then show "init_segment (insert n S) T"
then show ?lhs
using R init_segment_Un by force
qed
......@@ -213,14 +206,9 @@ proof -
by (auto simp: F_def \<Phi>_def)
have *: "infinite (F n) \<and> decides \<F> (f n) (F n) \<and> F n \<subseteq> M" for n
proof (induction n)
case 0
with \<open>infinite M\<close> show ?case
by (auto simp: F_def M0)
next
case (Suc n)
then show ?case
case (Suc n) then show ?case
by (metis P_Suc \<Phi>_def ex_infinite_decides_1 someI_ex subset_trans)
qed
qed (auto simp: F_def M0)
then have telescope: "F (Suc n) \<subseteq> F n" for n
by (metis P_Suc \<Phi>_def ex_infinite_decides_1 someI_ex)
let ?N = "\<Inter>n<card (Pow S). F n"
......@@ -317,7 +305,7 @@ proof -
proof
have "mmap ` K \<subseteq> list.set (map Inf (F (Suc (Max K))))"
unfolding mmap_def image_subset_iff
by (metis F Max_ge \<open>finite K\<close> hd_in_set imageI map_Inf_subset not_less_eq_eq set_map subsetD)
by (metis F Max_ge Suc_le_mono \<open>finite K\<close> hd_in_set imageI map_Inf_subset set_map subsetD)
with S show "S \<subseteq> list.set (map Inf (F (Suc (Max K))))"
using \<open>S \<subseteq> mmap ` K\<close> by auto
qed
......@@ -328,10 +316,10 @@ proof -
by (rule order_class.lift_Suc_antimono_le)
have hd_Suc_eq_Eps: "hd (F (Suc n)) = Eps (\<Phi> (F n))" for n
by simp
have Inf_hd_in_hd: "Inf (hd (F n)) \<in> hd (F n)" for n
have "Inf (hd (F n)) \<in> hd (F n)" for n
by (metis Inf_nat_def1 \<Phi>F \<Phi>_def finite.emptyI rev_finite_subset)
then have Inf_hd_in_Eps: "Inf (hd (F m)) \<in> Eps (\<Phi> (F n))" if "m>n" for m n
by (metis Eps_\<Phi>_decreasing Nat.lessE leD mmap_def not_less_eq_eq subsetD that hd_Suc_eq_Eps)
by (metis Eps_\<Phi>_decreasing Nat.lessE hd_Suc_eq_Eps less_imp_le_nat subsetD that)
then have image_mmap_subset_hd_F: "mmap ` {n..} \<subseteq> hd (F (Suc n))" for n
by (metis hd_Suc_eq_Eps atLeast_iff image_subsetI le_imp_less_Suc mmap_def)
have "list.set (F k) \<subseteq> list.set (F n)" if "k \<le> n" for k n
......@@ -350,7 +338,7 @@ proof -
fix S
assume "S \<subseteq> range mmap" "finite S"
define n where "n \<equiv> LEAST n. S \<subseteq> List.set (map Inf (F n))"
have "\<exists>n. S \<subseteq> List.set (map Inf (F n))"
have "\<exists>m. S \<subseteq> List.set (map Inf (F m))"
using \<open>S \<subseteq> range mmap\<close> \<open>finite S\<close> finite_F_bound by blast
then have S: "S \<subseteq> List.set (map Inf (F n))" and minS: "\<And>m. m<n \<Longrightarrow> \<not> S \<subseteq> List.set (map Inf (F m))"
unfolding n_def by (meson LeastI_ex not_less_Least)+
......@@ -401,17 +389,9 @@ proof -
then show ?thesis
proof cases
case 1
have "rejects \<F> S (range mmap)"
proof (clarsimp simp: rejects_def disjoint_iff)
fix X
assume "X \<in> comparables S (range mmap)" and "X \<in> \<F>"
moreover have "\<And>x X. \<lbrakk>X \<in> \<F>; init_segment S X; x \<in> X; x \<notin> S; x \<in> range mmap\<rbrakk>
\<Longrightarrow> x \<in> Eps (\<Phi> (F n))"
using less_S Inf_hd_F mmap_def by blast
ultimately have "X \<in> comparables S (Eps (\<Phi> (F n)))"
by (auto simp: comparables_def disjoint_iff subset_iff)
with 1 \<open>X \<in> \<F>\<close> show False by (auto simp: rejects_def)
qed
then have "rejects \<F> S (range mmap)"
apply (simp add: rejects_def disjoint_iff mmap_def comparables_def image_iff subset_iff)
by (metis less_S Inf_hd_F hd_Suc_eq_Eps)
then show ?thesis
by (auto simp: decides_def)
next
......@@ -430,10 +410,8 @@ proof -
ultimately show ?thesis
using 2 by (auto simp: strongly_accepts_def)
qed
with 2 have "strongly_accepts \<F> S (range mmap)"
by (auto simp: strongly_accepts_def)
then show ?thesis
by (auto simp: decides_def)
with 2 show ?thesis
by (auto simp: decides_def strongly_accepts_def)
qed
qed
qed
......@@ -455,16 +433,13 @@ proof (rule ccontr)
moreover have "{n \<in> M. \<not> strongly_accepts \<F> (insert n S) M} = {n \<in> M. rejects \<F> (insert n S) M}"
using dsM \<open>finite S\<close> \<open>infinite M\<close> \<open>S \<subseteq> M\<close> unfolding decides_subsets_def
by (meson decides_def finite.insertI insert_subset strongly_accepts_imp_accepts)
ultimately have "infinite {n \<in> M. rejects \<F> (insert n S) M}"
by simp
then have "infinite N"
ultimately have "infinite N"
by (simp add: N_def finite_nat_Int_greaterThan_iff)
then have "accepts \<F> S N"
using acc strongly_accepts_def \<open>N \<subseteq> M\<close> by blast
then obtain T where T: "T \<in> comparables S N" "T \<in> \<F>" and TSN: "T \<subseteq> S \<union> N"
unfolding rejects_def
using comparables_iff init_segment_subset by fastforce
then consider "init_segment T S" | "init_segment S T" "S\<noteq>T"
unfolding rejects_def using comparables_iff init_segment_subset by fastforce
then consider "init_segment T S" | "init_segment S T" "S\<noteq>T" "\<not> init_segment T S"
by (auto simp: comparables_def)
then show False
proof cases
......@@ -476,26 +451,20 @@ proof (rule ccontr)
next
let ?n = "Min (T-S)"
case 2
then obtain TS: "?n \<in> T-S" "finite (T-S)"
using T unfolding comparables_iff
by (meson Diff_eq_empty_iff Min_in finite_Diff init_segment_subset subset_antisym)
then have "?n \<in> N"
by (metis Diff_partition Diff_subset_conv Min_in T(1) TSN comparables_iff finite_Diff init_segment_subset subsetD sup_bot.right_neutral)
by (meson Diff_subset_conv TSN in_mono)
then have "rejects \<F> (insert ?n S) N"
using rejects_subset \<open>N \<subseteq> M\<close> by (auto simp: N_def)
then have \<section>: "\<not> init_segment T (insert ?n S) \<and> (init_segment (insert ?n S) T \<longrightarrow> insert ?n S = T)"
using T Diff_partition TSN \<open>Min (T - S) \<in> N\<close> \<open>finite S\<close>
unfolding rejects_def comparables_iff disjoint_iff
by auto
then have "T \<subseteq> insert ?n S"
proof (elim conjE impCE)
assume "\<not> init_segment T (insert ?n S)" "\<not> init_segment (insert ?n S) T"
moreover have "S \<lless> {Min (T - S)}"
using Sup_nat_less_sets_singleton N \<open>Min (T - S) \<in> N\<close> \<open>finite S\<close> by blast
moreover have "finite (T - S)"
using T comparables_iff by blast
ultimately show ?thesis
using \<open>init_segment S T\<close> Min_in init_segment_insert_iff by auto
qed auto
then show False
using "2" "\<section>" init_segment_iff by auto
using T Diff_partition TSN \<open>?n \<in> N\<close> \<open>finite S\<close>
by (auto simp: rejects_def comparables_iff disjoint_iff)
moreover have "S \<lless> {?n}"
using Sup_nat_less_sets_singleton N \<open>?n \<in> N\<close> \<open>finite S\<close> by blast
ultimately show ?thesis
using 2 TS Min_in init_segment_insert_iff by fastforce
qed
qed
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment